Mosser DM.
The Many Faces of Macrophage Activation.
J Leukoc Biol. 2003 Feb 1;73(2):209–12.
[toggle_content title=”Introduction”]

It used to be easy. In the old days (∼8 years ago), activated macrophages were simply defined as cells that secreted inflammatory mediators and killed intracellular pathogens. Things are becoming progressively more complicated in the world of leukocyte biology. Activated macrophages may be a more heterogenous group of cells than originally appreciated, with different physiologies and performing distinct immunological functions. The first hint of this heterogeneity came with the characterization of the “alternatively activated macrophage” [1]. The exposure of macrophages to interleukin (IL)-4 or glucocorticoids induced a population of cells that up-regulated certain phagocytic receptors but failed to produce nitrogen radicals [2] and as a result, were relatively poor at killing intracellular pathogens. Recent studies have shown that these alternatively activated cells produce several components involved in the synthesis of the extracellular matrix (ECM) [3], suggesting their primary role may be involved in tissue repair rather than microbial killing. It turns out that the name alternatively activated macrophage may be unfortunate for a few reasons. First, although these cells express some markers of activation, they have not been exposed to the classical, activating stimuli, interferon-γ (IFN-γ) and lipopolysaccharide (LPS). Second, and more importantly, the name implies that this is the only other way to activate a macrophage. Recent studies suggest that this may not be the case. Exposure of macrophages to classical activating signals in the presence of immunoglobulin G (IgG) immune complexes induced the production of a cell type that was fundamentally different from the classically activated macrophage. These cells generated large amounts of IL-10 and as a result, were potent inhibitors of acute inflammatory responses to bacterial endotoxin [4]. These activated macrophages have been called type 2-activated macrophages [5] because of their ability to induce T helper cell type 2 (Th2) responses that were predominated by IL-4 [6], leading to IgG class-switching by B cells. Thus, at this time, there appears to be at least three different populations of activated macrophages with three distinct biological functions. The first and most well described is the classically activated macrophage whose role is as an effector cell in Th1 cellular immune responses. The second type of cell, the alternatively activated macrophage, appears to be involved in immunosuppression and tissue repair. The most recent addition to this list is the type 2-activated macrophage, which is anti-inflammatory and preferentially induces Th2-type humoral-immune responses to antigen. Together, these three populations of cells may form their own regulatory network to prevent a well-intentioned immune response from progressing to immunopathology.

[/toggle_content]